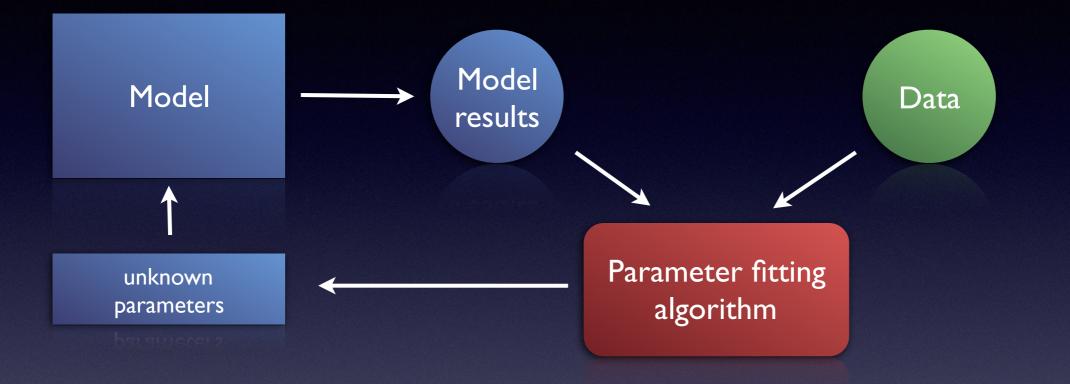

In Silico Systems Biology

Parameter Estimation with COPASI

Sven Sahle

Introduction

- When starting a modeling project usually many parameters of the model are not known
- How can I find out about the effect of parameter changes in the model?
 - Sensitivities / Metabolic control analysis
 - Parameter scans
- How can I find out about parameter values?


Introduction

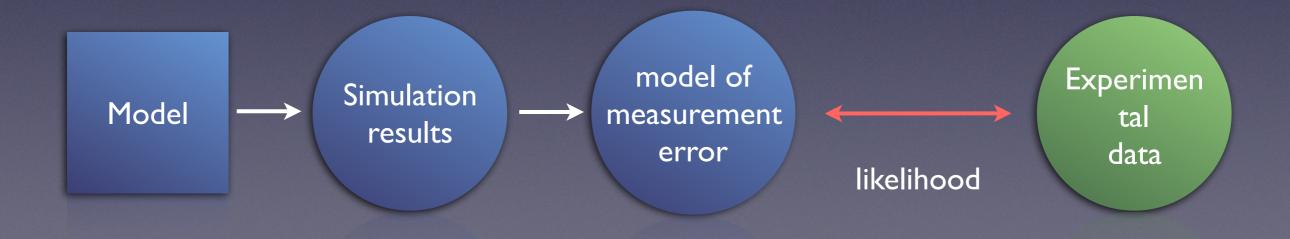
- simple approach: try to design an experiment for measuring the specific parameter
 - typically in vitro experiment
 - e.g. for rate constants: put different amounts of substrate in a test tube and measure how fast the reaction proceeds
- Problems:
 - often not possible, different from *in vitro* conditions

Introduction

- Systems biology approach: adapt a complete model to experimental data
 - indirect method: use the model to find out about a parameter by measuring something else
 - can also be used to answer more complex questions, such as model identification
 - more difficult

Basic idea of parameter fitting

• Change the parameters of a model so that it ,,best" fits the data


Criteria for parameter fitting

- What is the "best" fit for a given set of data?
 - This is a mathematically difficult question
 - Fortunately, heuristically there are simple solutions.

- Required information:
 - Model
 - Knowledge about measurement process

Maximum Likelihood

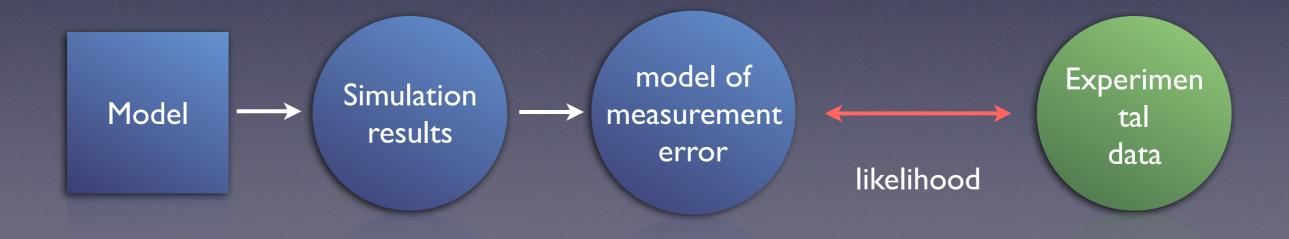
- In principle, if we know the model and the measurement process, we can calculate the probability that the the measurements would be the result of a simulation of the model.
- If this probability is high, the model is good.

Maximum Likelihood

- To do parameter fitting, we need an algorithm that changes the unknown parameters so that the likelihood becomes maximal.
- This is mathematically very nice, but the probality is difficult to calculate in realistic cases.

Least squares method

- If we make some assumptions about the measurement errors, we can find a rather simpler criterion:
- Assumption: Error follows a normal distribution, measurement error is uncorrelated
- Leads to Criterion: Likelihood is maximal when the difference (as defined on the next slide) between measurements and simulation results is minimal
 - This is easy to calculate but not the most general case.

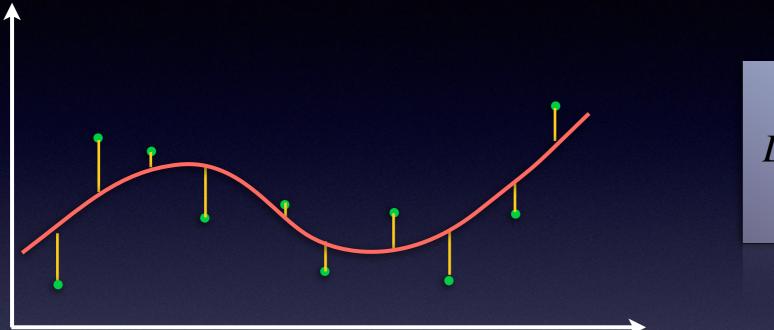

Criteria for parameter fitting

- What is the "best" fit for a given set of data?
 - This is a mathematically difficult question
 - Fortunately, heuristically there are simple solutions.

- Required information:
 - Model
 - Knowledge about measurement process

Maximum Likelihood

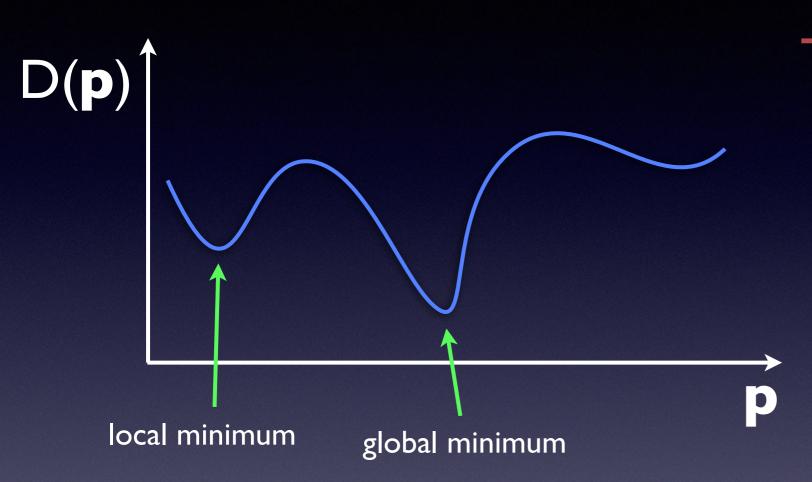
- In principle, if we know the model and the measurement process, we can calculate the probability that the the measurements would be the result of a simulation of the model.
- If this probability is high, the model is good.


Maximum Likelihood

- To do parameter fitting, we need an algorithm that changes the unknown parameters so that the likelihood becomes maximal.
- This is mathematically very nice, but the probality is difficult to calculate in realistic cases.

Least squares method

- If we make some assumptions about the measurement errors, we can find a rather simpler criterion:
- Assumption: Error follows a normal distribution, measurement error is uncorrelated
- Leads to Criterion: Likelihood is maximal when the difference (as defined on the next slide) between measurements and simulation results is minimal
 - This is easy to calculate but not the most general case. But it still works.


Least squares distance measure

$$D(p) = \sum_{i=1}^{N} (x_i - y_i(p))^2$$

x_i : measured values for time t_i $y_i(p)$: simulated values for time t_i , parameter p

The target function

The function is usually high dimensional!

- This is the function that needs to be minimized.
- usually has many local minima

Parameter space

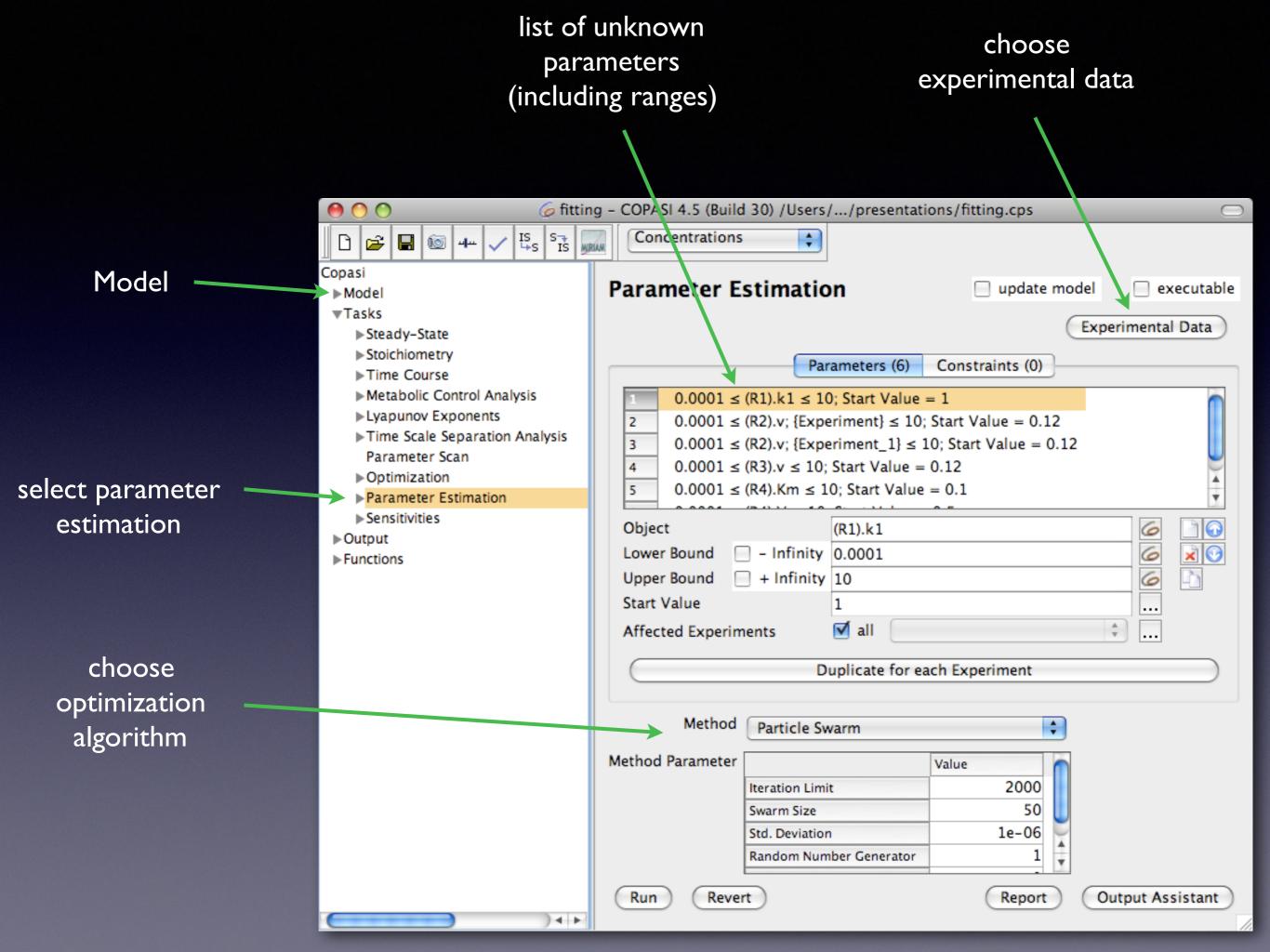
- For a complete specification of the parameter fitting problem we still need to specify the unknown parameters:
- List of parameters with allowed range of values
- These parameters span an M-dimensional space, the *parameter space*.
- One specific set of parameters corresponds to a point in parameter space

Optimization problem

- We now need a way to find the set of parameter values (a point in parameter space) for which the distance D is minimal (the best fit).
- A systematic scan of the parameter space is not possible when the dimensionality is large (many unknown parameters)
- Example: 10 parameters with 10 values each: 10¹⁰ evaluations. Even if we can do 100 simulations/s, it would take 3 years.

Optimization algorithms

- In general it is very difficult to find the parameter values for which D(p) is minimal
- It can be shown that there is no optimal optimization algorithm for all cases (this means there is no way to decide which one is best for a given problem)
- This means you should always try several algorithms for difficult parameter estimation problems.


Optimization Algorithms

- Based on derivatives
 - Steepest descent
 - Newton
 - Levenberg-Marquardt
- Using geometry
 - Nelder-Mead (simplex)
 - Hooke-Jeeves

- Based on genetics
 - Genetic algorithm
 - Evolutionary programing
 - Evolution strategy
- Other stochastic
 - random search
 - particle swarm
 - simulated annealing

Specification of a parameter estimation problem

- What kind of information is needed for the computer to do a parameter estimation?
 - The model
 - the experimental data
 - the mapping between experimental data and model simulation results
 - the ranges of possible values for the unknown parameters
 - the optimization algorithm

possibly several experiments per file

	$\Theta \bigcirc \Theta$	\varTheta 🔿 🙆 Experimental Data		
	File	Exp	periment	
	fitting2.txt		periment	
data files		Exp	periment_1	
	Name Experiment		First Row 1	Last Row 33
	Copy settings below	from previous 🗹 to next		
	Experiment Type (🔵 Steady State 💿 Time Cour	rse Header 1	
	Weight Method	Mean Square	Separator	✓ <tab></tab>
		ype Model Object		Weight
mapping of data to		Time 🔹 🍊		1 10
model elements		dependent 🗘 🌀 [X]		(1) (0.171035)
	3 Y[Concentration	dependent : 6 [Y]		(0.171035)
		Method	Particle Swarm	÷
		Method Parameter	r Va	lue
			Iteration Limit	2000
			Swarm Size Std. Deviation	1e-06
			Random Number Generator	
		Run Reve	ert	Report Output Assistant

Important:

- The result of a parameter fitting always needs to be inspected afterwards!
- Having a good result for a fit does **not** mean that the parameter value is the "true" one. This depends on the assumptions about the errors and the correctness of the model.
- For the stochastic algorithms the result is not reproducible!

Using several experiments for parameter estimation

- The more data available, the better.
 - So if you have data from several experiments it should be used for parameter estimation simultaneously
- COPASI can deal with an arbitrary number of experiments, also of different kinds (combined time course/steady state, different variables, different time points, etc.)

several experiments...

- Adding data from several experiments is straight forward in COPASI. Several data files can be specified and each can contain several experiments
- Important information: What is the same for all experiments and what is different between experiments? For the things that are different, are they known or unknown?

several experiments...

- Simplest case: Repeated experiments.
 - nothing special needs to be done in COPASI
- Several experiments under different conditions. The conditions are known.
 - Example: Different stimulations in several experiments.
 - In COPASI: The stimulation needs to be a parameter in the model. In the experimental data specification this value is selected as an *independent* parameter. *Independent* data is known data that is provided in the data file. Dependent data is data that is used for fitting.

several experiments...

- Experiments where some conditions are different, but not known
 - Example: *In vivo* experiments, even if the experiment is repeated with the same preparation, the initial conditions (inside the organism) are typically different.
 - In COPASI: The user can specify that some parameters are fitted for all experiments, and some are fitted for a specific subset of experiments.