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Parameter Estimation with
COPASI




Introduction

® VWhen starting a modeling project usually many
parameters of the model are not known

® How can | find out about the effect of




Introduction

® simple approach: try to design an experiment
for measuring the specific parameter

® typically in vitro experiment
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Introduction

® Systems biology approach: adapt a complete
model to experimental data

@ indirect method: use the model to find out about a




Basic idea of parameter fitting




Criteria for parameter fitting

® What is the ,,best™ fit for a given set of data?

® This is a mathematically difficult question

® Fortunately, heuristically there are simple solutions.




Maximum Likelihood

® In principle, if we know the model and the
measurement process, we can calculate the
probability that the the measurements would
be the result of a simulation of the model.
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Maximum Likelihood

® TJo do parameter fitting, we need an algorithm
that changes the unknown parameters so that
the likelihood becomes maximal.




Least squares method

® |f we make some assumptions about the
measurement errors, we can find a rather
simpler criterion:

e Assumption: Error follows a normal
distribution, measurement error is
uncorrelated
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Maximum Likelihood

® TJo do parameter fitting, we need an algorithm
that changes the unknown parameters so that
the likelihood becomes maximal.




Least squares method

® |f we make some assumptions about the
measurement errors, we can find a rather
simpler criterion:

¢ Assumption: Error follows a normal
distribution, measurement error is
uncorrelated




Least squares distance measure




The target function

D(p) The. funcFlon |§ usually
high dimensional!




Parameter space

® For a complete specification of the parameter
fitting problem we still need to specify the
unknown parameters:

® List of parameters with allowed range of
values




Optimization problem

® VVe now need a way to find the set of

parameter values (a point in parameter
space) for which the distance D is minimal

(the best fit).

® A systematic scan of the parameter space is
not possible when the dimensionality is large

(many unknown parameters)

® Example: 10 parameters with |0 values each:
10'? evaluations. Even if we can do 100
simulations/s, it would take 3 years.



Optimization algorithms

® |n general it is very difficult to find the parameter
values for which D(p) is minimal

® |t can be shown that there is no optimal
optimization algorithm for all cases (this means
there is no way to decide which one is best for a




Optimization Algorithms

® Based on derivatives ® Based on genetics
® Steepest descent ® Genetic algorithm
® Newton ® Evolutionary programing

® |evenberg-Marquardt ® Evolution strategy




Specification of a parameter
estimation problem

® VWhat kind of information is needed for the
computer to do a parameter estimation!?

® T[he model

® the experimental data




select parameter
estimation

choose
optimization
algorithm

list of unknown
parameters
(including ranges)

choose
experimental data
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0.0001 = (R1).k1 = 10; Start Value = 1

0.0001 = (R2).v; {Experiment} < 10; Start Value = 0.12
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possibly several
experiments per file
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Important:

® The result of a parameter fitting always needs
to be inspected afterwards!

® Having a good result for a fit does not mean
that the parameter value is the ,,true” one.




Using several experiments for
parameter estimation

® [he more data available, the better.

® So if you have data from several experiments it should
be used for parameter estimation simultaneously




several experiments...

® Adding data from several experiments is
straight forward in COPASI. Several data files

can be specified and each can contain several
experiments




several experiments...

® Simplest case: Repeated experiments.

® nothing special needs to be done in COPAS

® Several experiments under different
conditions. The conditions are known.

ifferent stimulations in several experiments.




several experiments...

® Experiments where some conditions are
different, but not known

® Example: In vivo experiments, even if the experiment is
- repeated with the same preparation, the initial




